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Abstract

We consider the dimensional reduction of a gravitational field g in a multidimensional universe endowed with a simple action of
a compact Lie group. It is known that when the group preserves g, this dimensional reduction leads in particular to scalar fields that
correspond to an invariant metric on each orbit. We show that the action functionals of those fields (obtained from the reduction of
Einstein’s action) exhibit, in the hyperbolic case, polynomials of several variables having a degree less or equal to 6.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the usual gauge theories, Higgs fields appear at the classical level as scalar fields φ, whose dynamics are
prescribed by a fourth-degree polynomial potential

V (φ) = cte(|φ|
2
− a2)2

at least when we are in front of a spontaneous symmetry breaking mechanism that will generate mass for the gauge
particles.

At first sight, such Higgs potentials seem to be put in by hand, while it would be interesting to have a geometrical
understanding of their origin. The approach considered here is that of dimensional reduction theories, behind which
the central idea is the existence of a simple and symmetric field theory in a higher-dimensional universe, leading
through a process of dimensional reduction, to the field theories we see in our four-dimensional space–time.

A first step in this direction is to search for multidimensional theories that would give, by dimensional reduction,
field theories containing Higgs-like scalar fields.

A well-known solution for this problem is to take a symmetric Yang–Mills theory on a multidimensional universe.
Under appropriate conditions, the dimensional reduction of such a theory, studied first by Manton (cf. [1,2]), gives a
Yang–Mills theory with Higgs fields exhibiting a symmetry-breaking potential like the one above.
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Actually, studies made by Jadczyk, Coquereaux and Pilch (cf. [3–5]) showed the following: if one wants to perform
the dimensional reduction of a symmetric Yang–Mills field in a sufficiently general setting, then the natural object
to reduce is not a symmetric Yang–Mills field alone, but an appropriate combination of two fields: a symmetric
Yang–Mills field + a symmetric gravity field.

They also showed that the best way to get such an appropriate combination is to consider that the multidimensional
universe in which these two symmetric fields live is itself the result of the dimensional reduction of another universe
with even more dimensions, and by adding a constant field to the symmetric couple, we can get all the fields from a
single and very symmetric gravitational field on the universe with the highest dimension. In this sector, we are in front
of Kaluza–Klein theories, as they have been extended by Richard Kerner (cf. [6,7]) to the case where the compactified
extra dimensions are those of a non-necessarily abelian Lie group.

Thus, the four-dimensional theory containing Higgs-like scalar fields seems to come in fact from the dimensional
reduction of a symmetric gravity field. But those φ fields which exhibit a fourth-degree polynomial potential are not
the only fields one obtains from the reduction of the very symmetric gravitational theory above. There are other fields
also, in particular scalar fields with different dynamics.

In fact, starting from the above particular “big” universe, with the particular very symmetric gravitational field,
we have the choice between two ways of reducing (cf. [5]): either we make a first partial reduction to get the less
symmetric couple, and then reduce this last one to get our four-dimensional theory with Higgs fields, or we make
directly a complete dimensional reduction of the symmetric gravity field in the big universe, which gives in particular
Higgs fields on space–time, that we’ll have to distinguish from other scalar fields obtained.

These two methods seem equivalent, which implies that the intermediate level could be omitted! In other words, if
one is seeking for a more fundamental and geometrical understanding of the nature of the Higgs fields, this is to be
found in the dimensional reduction of a gravitational theory.

This idea is supported also by the work of Maspfuhl, who has showed in the first part of [8] that in the presence
of a coistropic constraint, one can get the phase space of particles in gravitational, Yang–Mills and Higgs fields, by
starting from a certain class of Hamiltonians defined on a general Poisson manifold.

In Section 2, we will give a short recap on dimensional reduction of symmetric gravity, with a focus on the scalar
fields obtained from such a reduction that are interpreted as collections of invariant metrics on homogeneous spaces,
and are known to have a rather different behavior than the usual Higgs fields. Therefore, we will propose in Section 3 a
definition of Higgs-like scalar fields, by distinguishing components of the general scalar fields on which we recover a
positive polynomial potential. We study then the Yang–Mills term and the kinetic term of the reduced theory. Finally,
we study in Section 4 a model with SU (5)/U (1) as compactified space, leading to an abelian gauge theory having a
torus as gauge group.

2. Dimensional reduction of symmetric gravitational fields

2.1. The dimensional reduction theorem

Coquereaux and Jadzcyk performed the dimensional reduction of symmetric gravitational fields in the general
context of fiber bundles with homogeneous fibers (cf. [9]), and the short recap we present in this first part is directly
inspired from their work.

One starts with a manifold U , on which a compact Lie group G is acting on the right. Let M the quotient manifold
of U by the action of G. One chooses then some point u0 in U , and let H be the stabilizer of u0 under G. The action
of G is supposed to be regular (or simple) in the following sense: every stabilizer under G is conjugated to H . By the
orbit theorem, which states the elementary fact that each orbit uG is diffeomorphic to G/stab(u), we deduce that all
the orbits are in fact diffeomorphic to the same homogeneous space which is G/H . Therefore, U can be realized as a
fiber bundle over M , the fibers being homogeneous spaces for the group G, copies of the typical fiber G/H .

We would like to see the fiber bundle (U,M,G/H) as associated to some principal fiber bundle. For this, we
introduce the normalizer N (H) of H is G. Notice that since we started with a right action of G on U , G/H is the
space of right cosets Ha, and thus G/H is equipped with a right action of G. So G does not act naturally on G/H on
the left. But if we take the normalizer N (H), then N (H) acts of course on G/H on the right, but it also acts naturally
on G/H on the left! Indeed, all one has to do is to set n(Ha) = Hna and then one gets a left action of N (H) on
G/H , and since (nh)(Ha) = n(Ha), we see that N (H)|H acts also on G/H , on the left. On the other hand, the right
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action of G on U induces a right action of N (H) on U . Let Q be the submanifold of U whose points have exactly H
as stabilizer. It’s easy to see then that Q is invariant under the right action of N (H): indeed, for q ∈ Q and n ∈ N (H),
stab(qn) = n−1stab(q)n = n−1 Hn = H , so qn ∈ Q. Notice also that q(nh) = qh′n = qn, so here also, we get an
action of N (H)|H , but this time on Q and on the right. The difference between the right-action of N (H) on Q, and
that of N (H)|H , is that the latter is free. Therefore, Q is realized as a principal fiber bundle on M , with N (H)|H
as structure group. Now, using the left action of N (H)|H on G/H , we may construct the associated fiber bundle
Q ×N (H)|H G/H , and it’s not hard to see that (q, Ha)N (H)|H 7−→ qa is an isomorphism from Q ×N (H)|H G/H to
U .

Now we get to the infinitesimal level. Let g denote the Lie algebra of G, and h that of H . The group G being
compact, it is possible to choose a scalar product 〈, 〉 on g that is invariant by the adjoint representation of G. Let us
call m the orthogonal complement of h in g. Since H acts on h and the scalar product is in particular Ad(H)-invariant,
it is clear that we get then a reductive decomposition g = h ⊕ m, Ad(H)m ⊂ m (reductive simply means that
the subspace m is invariant under the restriction to H of the adjoint representation). Thus, we have a representation
Adm

|H : H −→ GL(m) that will be important in the following. We also introduce a vector space that is going to play
a significant role:

Let SH
2 (m) denote the vector space of all Ad(H)-invariant symmetric bilinear forms on m. In other terms,

SH
2 (m) = { f ∈ Sym2(m∗)/ t Adh( f ) = f ∀h ∈ H}.

We shall endow this vector space with a representation of the group N (H)|H : first, notice that m, being the
orthogonal complement of h in g for our Ad(G)-invariant scalar product on g, is not only Ad(H)-invariant, but also
Ad(N (H))-invariant (since N (H) acts on h and the scalar product is in particular Ad(N (H))-invariant). Thus, N (H)
acts on m, and therefore, it acts on the space of symmetric bilinear form on m. Actually, it’s easy to check that the
subspace SH

2 (m) is invariant under N (H), and that this representation induces a representation ρ of N (H)|H on
SH

2 (m), given by ρ[n]( f ) =
t Adn−1( f ).

Now, starting from a G-invariant metric g on U , we can construct a triple of fields (γ, α, f ), that can be considered
locally as defined on M .

. At each point u in U , g(u) is a scalar product on the tangent space TuU . If we call Zu the orthogonal complement
of the vertical subspace Vu(U ) at u, we get a horizontal distribution on the fiber bundle (U,M,G/H), that is, a
connection α on the principal fiber bundle (Q,M, N (H)|H).

. Next, the connection α provides an isomorphism at each point u between the horizontal space Zu and the tangent
space Tx M of M at x = π(u) (π : U −→ M being the bundle’s projection). This isomorphism allows us to project
the scalar product g(u)|Zu×Zu to a scalar product γ (x) on Tx M . Hence, we get a metric γ on M .

. Finally, for x ∈ M , let fx denote the pull-back of g by the canonical injection of the fiber Ux in U . Then, for
each x ∈ M , fx is a G-invariant metric on the fiber Ux . Therefore, for each q ∈ Qx , it defines on TqUx a scalar
product fx (q) which is invariant by the isotropy representation of H . If we pull-back fx (q) by the H -equivariant
isomorphism from m to TqUx defined by the choice of q, we get an Ad(H)-invariant scalar product f (q) on m.
Hence, we have an N (H)|H -equivariant map f : Q −→ SH

2 (m), that we shall call a Thiry scalar field.

Thus, we have the following dimensional reduction theorem, proven in [9]:

Theorem 2.1 (Coquereaux and Jadczyk). The preceding construction defines a one-to-one correspondence between
the set of G-invariant metrics on U, and the set of triples (γ, α, f ), where:

• γ is a metric on the base manifold M,
• α is a connection form on the principal fiber bundle (Q,M, N (H)|H),
• f is a scalar field on Q taking values in SH

2 (m) (equivariant for the group N (H)|H).

2.2. The potential for the Thiry scalar field

It is possible to perform now the dimensional reduction of the action density. On the multidimensional universe,
we have a pure gravity theory; therefore we can write the Einstein–Hilbert action. The constraint of G-invariance of
the metric field implies that the Lagrangian of the multidimensional theory does not depend on the internal variables,
but only the space–time variables. Therefore, one can integrate over the internal space to get the reduced action
density on the base manifold. What we obtain is of course an Einstein–Yang–Mills theory interacting with scalar field
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f . In general, we have a kinetic term for the Thiry scalar field f , when it interacts with the gauge field. We also
get a potential term, that we are going to study carefully here, leaving the Yang–Mills term and the kinetic term to
Section 3.4.

The potential appearing in the reduced action is a real-valued function V defined on the open set SH++

2 (m)made of
positive definite elements of SH

2 (m). In fact, V can be more generally defined on the open subset of all non-degenerate
elements of SH

2 (m), but we shall restrict ourselves to the positive definite case.
It is well known (cf. [10] for example) that SH++

2 (m) is in one-to-one correspondence with the set of all G-invariant
metrics on the homogeneous space G/H .

As one might expect, the potential obtained by dimensional reduction is then the opposite of the scalar curvature
functional of G/H restricted to the set of G-invariant metrics.

There are several ways to compute the scalar curvature of a riemannian homogeneous space (cf. for example [10–
13]) but most of them give the expression after having chosen a fixed G-invariant metric and an orthonormal basis on
the tangent space at the origin. Here, we are rather interested in the scalar curvature functional, so we would like the
dependence on the metric to be explicit. The formula we present here is an intrinsic version of that of [9].

Let us introduce some notations first. We denote by ãd : g −→ gl(g) the adjoint representation of g. For any
X ∈ m, let ad(X) be the endomorphism of m defined by: ad(X) = πm ◦ ãd(X) ◦ ιm , where ιm : m −→ g and
πm : g −→ m are the canonical injection and projection respectively. Now for any bilinear form b on m, we denote
by b̂ : m −→ m∗ the linear map canonically associated to b (that is: b̂(X)(Y ) = b(X, Y ) for any X, Y ∈ m). With
these notations, the potential V : SH++

2 (m) −→ R is given by:

V ( f ) =
1
4

tr( f̂ −1
◦ D̂)+

1
2

tr( f̂ −1
◦ B̂)+ tr( f̂ −1

◦ D̂h)

where D, B and Dh are the bilinear forms on m defined by:

D(X, Y ) = tr( f̂ −1
◦

t ad(X) ◦ f̂ ◦ ad(Y ))
B(X, Y ) = tr(ad(X) ◦ ad(Y ))
Dh(X, Y ) = tr(πm ◦ ãd(Y ) ◦ ιh ◦ πh ◦ ãd(X) ◦ ιm).

The first term of V will be of interest to us, so we will begin by expressing it in a different way. Let L(m)
denote the space of endomorphisms of m. Each f ∈ SH++

2 (m) defines a scalar product on L(m) given by:
〈u, v〉 f f = tr( f̂ −1

◦
t u ◦ f̂ ◦ v). If f̂ f : L(m) −→ L(m)∗ denotes the isomorphism associated to 〈, 〉 f f , then we get a

scalar product on the space L(m,L(m)) of linear maps from m to L(m) by setting: 〈α, β〉 f f f = tr( f̂ −1
◦

tα ◦ f̂ f ◦β).
(That 〈, 〉 f f and 〈, 〉 f f f are positive definite symmetric bilinear forms is not difficult to prove.) Using the preceding
definitions, we can write:

D(X, Y ) = tr( f̂ −1
◦

t ad(X) ◦ f̂ ◦ ad(Y ))
= 〈ad(X), ad(Y )〉 f f

=
t ad(〈, 〉 f f )(X, Y )

so D̂ =
t ad ◦ f̂ f ◦ ad, therefore

tr( f̂ −1
◦ D̂) = tr( f̂ −1

◦
t ad ◦ f̂ f ◦ ad)

= 〈ad, ad〉 f f f .

Thus, we have

1
4

tr( f̂ −1
◦ D̂) =

1
4
‖ad‖

2
f f f

which proves the positivity of this term.
It is convenient to write the representation ρ of the gauge group N (H)|H on the vector space SH

2 (m) in terms of
the linear maps f̂ : m −→ m∗: ρ[n]( f̂ ) =

t Adn−1 ◦ f̂ ◦ Adn−1 .
When we will study the kinetic term, we will need the expression of the covariant derivative corresponding to the

connection α and acting on the SH
2 (m)-valued Thiry scalar fields. Therefore, we need to write also the infinitesimal
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version of ρ, that is, the representation ρ′ of the Lie algebra k = n(h)|h on SH
2 (m). It is easy to check that this last one

is given by: ρ′

[ Ã]
( f̂ ) = −(t ad

Ã
◦ f̂ )− ( f̂ ◦ ad Ã) for every Ã ∈ n(h).

Proposition 2.2. The potential V is invariant under the representation of the gauge group N (H)|H.

Proof. We begin with the first term of V : tr( f̂ −1
◦ D̂ f )

D
ρ[n]( f̂ )(X, Y ) = tr(ρ[n]( f̂ )−1

◦
t ad(X) ◦ ρ[n]( f̂ ) ◦ ad(Y ))

= tr((t Adn−1 ◦ f̂ ◦ Adn−1)
−1

◦
t ad(X) ◦

t Adn−1 ◦ f̂ ◦ Adn−1 ◦ ad(Y ))

= tr(Adn ◦ f̂ −1
◦

t Adn ◦
t ad(X) ◦

t Adn−1 ◦ f̂ ◦ Adn−1 ◦ ad(Y ))

= tr( f̂ −1
◦

t (Adn−1 ◦ ad(X) ◦ Adn) ◦ f̂ ◦ (Adn−1 ◦ ad(Y ) ◦ Adn))

= tr( f̂ −1
◦

tαn(X) ◦ f̂ ◦ αn(Y ))

if we set αn(X) = Adn−1 ◦ ad(X) ◦ Adn for all X ∈ m.
So D̂

ρ[n]( f̂ ) =
tαn ◦ f̂ f ◦ αn . Therefore,

tr(ρ[n]( f̂ )−1
◦ D̂

ρ[n]( f̂ )) = tr(Adn ◦ f̂ −1
◦

t Adn ◦
tαn ◦ f̂ f ◦ αn)

= tr( f̂ −1
◦

t (αn ◦ Adn) ◦ f̂ f ◦ (αn ◦ Adn)).

But for all X, Y ∈ m,

αn ◦ Adn(X)(Y ) = αn(Adn(X))(Y )

= Adn−1 ◦ ad(Adn(X)) ◦ Adn(Y )

= Adn−1(ad(Adn(X))(Adn(Y )))

= Adn−1([Adn(X),Adn(Y )]m)

= Adn−1 ◦ Adn([X, Y ]m)

= [X, Y ]m

= ad(X)(Y ).

Therefore,

tr(ρ[n]( f̂ )−1
◦ D̂

ρ[n]( f̂ )) = tr( f̂ −1
◦

t ad ◦ f̂ f ◦ ad)

= tr( f̂ −1
◦ D̂ f ).

The invariance of the two other terms follows from the invariance of the Killing form. �

We saw that V is, up to a sign, the scalar curvature functional of a homogeneous space. This function has no reason
to have a fixed sign. There are many examples (cf. [13,9]) in which this potential is not bounded from below. At this
level, one may wonder if it is possible to construct a physical theory out of such a potential.

In order to recover a more realistic pattern for the potential, we shall try to distinguish certain directions in the
space SH

2 (m) of the scalar fields, on which we might have a positive polynomial potential, closer to that of the Higgs
fields.

3. Recovering scalar fields with polynomial potential

3.1. Introduction

Let us consider the vector space SH
2 (m). There are at least two interesting ways to decompose it. First, we may

start by finding the decomposition of m into irreducible representations of the group H :

m =

⊕
mi

with Ad(H)mi ⊂ mi , and the mi ’s are irreducible.
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Associated to this decomposition, one then writes a decomposition of SH
2 (m), which allows for example the

calculation of the dimension of SH
2 (m).

Another natural decomposition of SH
2 (m) is the one in terms of irreducible representations of N (H)|H . It would

seem interesting to look at some N (H)|H -invariant subspace of SH
2 (m), constructed out of Ad(H)-invariant factors

in the decomposition m = ⊕mi . In particular models of symmetric gauge fields dimensional reduction, we find Higgs
fields as intertwining operators between two representative spaces, so this suggests we look at fields of the following
type: Ad(H)-equivariant maps φ : mi −→ m j coming from the fields f ∈ SH

2 (m).

3.2. Decomposition of SH
2 (m)

Let us study the following situation: we fix two Ad(N (H))-invariant vector subspaces m1 and m2 in m, getting
what we shall call an Ad(N (H))-invariant splitting: m = m1 ⊕ m2. We denote by LH (m1,m2) the space of Ad(H)-
equivariant linear maps from m1 to m2. Then, we can state the lemma on which all our following results will lie:

Lemma 3.1. There is a one-to-one correspondence between the space SH
2 (m) and the direct product LH (m1,m2)×

SH
2 (m1)× SH

2 (m2).
It is given in matrix form by:

(φ, h, k) 7−→ f =

(
h +

tφ kφ −
t φk

−kφ k

)
.

Proof. (1) Taking f ∈ SH
2 (m), we set:

. φ = −prm 2
|m 1

, where prm 2 is the orthogonal projector on m2 for the Euclidean structure defined by f .
. ∀X1, Y1 ∈ m1, h(X1, Y1) = f (X1 + φ(X1), Y1 + φ(Y1)).
. k = f|m 2×m 2 .
For all X = X1 + X2 and Y = Y1 +Y2 (X1, Y1 ∈ m1, X2, Y2 ∈ m2), letting X = (X1 +φ(X1))+ (−φ(X1)+ X2)

and Y = (Y1 + φ(Y1))+ (−φ(Y1)+ Y2), we compute f (X, Y ) and obtain:

f (X, Y ) = h(X1, Y1)+ k(φ(X1), φ(Y1))− k(φ(X1), Y2)− k(φ(Y1), X2)+ k(X2, Y2).

(2) Conversely, let (φ, h, k) ∈ LH (m1,m2)× SH
2 (m1)× SH

2 (m2). It is not difficult to see that if we define f ∈ SH
2 (m)

by the preceding formula, then:
. φ = −prm 2

|m 1
, where prm 2 is the orthogonal projector on m2 for the Euclidean structure defined by f .

. ∀X1, Y1 ∈ m1, h(X1, Y1) = f (X1 + φ(X1), Y1 + φ(Y1)).

. k = f|m 2×m 2 . �

Remark 3.2. The space of Higgs fields that we obtained seems to depend on the choice of the decomposition of m
into m1 and m2. In fact, we can expect to see a natural justification of this choice in the context of a supersymmetric
extension of this model.

It is easy to check the following:

(1) f is positive definite if and only if h and k are positive definite.
(2) The assumption of Ad(N (H))-invariance for m1 and m2 implies the existence of a representation of N (H)|H on

SH
2 (m1), on SH

2 (m2), and also on LH (m1,m2). Denoting by Ad(1) (resp. Ad(2)) the representation of N (H) on
m1 (resp. on m2), and by ad(1) (resp. ad(2)) the representation of n(h) on m1 (resp. on m2), the representations on
the fields spaces are given by:

ρ1
[n]
(ĥ) =

t Ad(1)n−1 ◦ ĥ ◦ Ad(1)n−1

ρ2
[n]
(k̂) =

t Ad(2)n−1 ◦ k̂ ◦ Ad(2)n−1

ρ0
[n]
(φ) = Ad(2)n ◦ φ ◦ Ad(1)n−1 .
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We define the corresponding representations ηi
= (ρi )′ of the Lie algebra k = n(h)|h: For every Ã ∈ n(h),

η1
[ Ã]
(ĥ) = −(t ad(1)

Ã
◦ ĥ)− (ĥ ◦ ad(1)

Ã
)

η2
[ Ã]
(k̂) = −(t ad(2)

Ã
◦ k̂)− (k̂ ◦ ad(2)

Ã
)

η0
[ Ã]
(φ) = (ad(2)

Ã
◦ φ)− (φ ◦ ad(1)

Ã
).

3.3. The potential for the scalar field φ

For h and k fixed in SH++

2 (m1) and SH++

2 (m2) respectively, let us compute the potential V in terms of φ. Here we
denote by V the real-valued function defined on LH (m1,m2) by:

V (φ) =
1
4

tr( f̂ −1
◦ D̂)+

1
2

tr( f̂ −1
◦ B̂)+ tr( f̂ −1

◦ D̂h)

where f is given by:

f̂ =
tπ1 ◦ ĥ ◦ π1 +

t (φ ◦ π1 − π2) ◦ k̂ ◦ (φ ◦ π1 − π2)

We will need to split ad(X) in terms of m1 and m2, so we define:

ad11(X) = π1 ◦ ad(X) ◦ ι1 ∈ L(m1)

ad12(X) = π1 ◦ ad(X) ◦ ι2 ∈ L(m2,m1)

ad21(X) = π2 ◦ ad(X) ◦ ι1 ∈ L(m2,m1)

ad22(X) = π2 ◦ ad(X) ◦ ι2 ∈ L(m2).

With the notations that we will introduce below, we are going to prove the following theorem:

Theorem 3.3. 1. The potential for the scalar field φ is a polynomial of degree at most 6 in φ, whose sixth-degree term
is positive and is given by:

V (6)(φ) =
1
4
‖φad12(φ)φ‖

2
hhk .

Besides, V (6)
= 0 if and only if the third-degree condition is satisfied for every φ: {φ ◦ ad12(φ(X)) ◦ φ = 0 ∀X ∈

m1}.
2. If V (6)

= 0, the potential V (φ) becomes a polynomial of degree at most 4 in φ, whose fourth-degree term is
positive and is given by:

V (4)(φ) =
1
4
‖φad11(φ)− ad22(φ)φ + φad12φ‖

2
hhk +

1
4
‖ad12(φ)φ‖

2
hhh

+
1
4
‖φad12(φ)‖

2
hkk +

1
4
‖φad12φ‖

2
khk .

Besides, V (4)
= 0 if and only if the quadratic conditions are satisfied for every φ:

(C)


φad11(φ(X))− ad22(φ(X))φ + φad12φ = 0 ∀X ∈ m1
ad12(φ(X))φ = 0 ∀X ∈ m1
φad12(φ(X)) = 0 ∀X ∈ m1
φad12φ = 0 ∀X ∈ m2.

We begin by computing the first term 1
4 tr( f̂ −1

◦ D̂). For all X, Y ∈ m, we have:

f̂ −1
◦

t ad(X) ◦ f̂ ◦ ad(Y ) = [(ι1 + ι2 ◦ φ) ◦ ĥ−1
◦

t (ι1 + ι2 ◦ φ)+ι2 ◦ k̂−1
◦

t ι2] ◦
t ad(X)

◦ [
tπ1 ◦ĥ ◦ π1 +

t (φ ◦ π1 − π2) ◦ k̂ ◦ (φ ◦ π1 − π2)] ◦ ad(Y ).
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We can already see from this expression that for each X, Y ∈ m, D(X, Y ), which is the trace of the above expression,
is a polynomial of degree at most 4 in φ. The fourth-degree term in D(X, Y ) is:

D(4)(X, Y ) = tr(ι2 ◦ φ ◦ ĥ−1
◦

tφ ◦
t ι2 ◦

t ad(X) ◦
tπ1 ◦

tφ ◦ k̂ ◦ φ ◦ π1 ◦ ad(Y ))

= tr(φ ◦ ĥ−1
◦

tφ ◦
t ι2 ◦

t ad(X) ◦
tπ1 ◦

tφ ◦ k̂ ◦ φ ◦ π1 ◦ ad(Y ) ◦ ι2)

= tr(φ ◦ ĥ−1
◦

tφ ◦
t ad12(X) ◦

tφ ◦ k̂ ◦ φ ◦ ad12(Y ))

= tr(ĥ−1
◦

tφ ◦
t ad12(X) ◦

tφ ◦ k̂ ◦ φ ◦ ad12(Y ) ◦ φ).

On the other hand, f̂ −1 is a polynomial of degree 2 in φ, whose second-degree term is ι2 ◦ φ ◦ ĥ−1
◦

tφ ◦
t ι2.

We deduce therefore that the potential V is a polynomial of degree at most 6 in φ, whose sixth-degree term is:

V (6)(φ) =
1
4

tr(ι2 ◦ φ ◦ ĥ−1
◦

tφ ◦
t ι2 ◦D̂(4))

=
1
4

tr(φ ◦ ĥ−1
◦

tφ ◦
t ι2 ◦D̂(4)

◦ ι2)

=
1
4

tr(ĥ−1
◦

tφ ◦
t ι2 ◦D̂(4)

◦ ι2 ◦ φ)

=
1
4

tr(ĥ−1
◦ P̂(6)(φ))

where we have set P̂(6)(φ) =
tφ ◦

t ι2 ◦D̂(4)
◦ ι2 ◦ φ.

Thus, we have:

V (6)(φ) =
1
4

tr(ĥ−1
◦ P̂(6)(φ)).

Here also, it is possible to write V (6)(φ) in a more synthetic way. For this, we make use of the scalar products h and
k to define the following scalar products:

On L(m1,m2) : 〈u, v〉hk = tr(ĥ−1
◦

t u ◦ k̂ ◦ v) = ĥk(u)(v)

On L(m1) : 〈u, v〉hh = tr(ĥ−1
◦

t u ◦ ĥ ◦ v) = ĥh(u)(v)

On L(m2) : 〈u, v〉kk = tr(k̂−1
◦

t u ◦ k̂ ◦ v) = k̂k(u)(v)

which we use to define again the following scalar products:

On L(m1,L(m1,m2)) : 〈α, β〉hhk = tr(ĥ−1
◦

tα ◦ ĥk ◦ β)

On L(m1,L(m1)) : 〈α, β〉hhh = tr(ĥ−1
◦

tα ◦ ĥh ◦ β)

On L(m1,L(m2)) : 〈α, β〉hkk = tr(ĥ−1
◦

tα ◦ k̂k ◦ β)

On L(m2,L(m1,m2)) : 〈α, β〉khk = tr(k̂−1
◦

tα ◦ ĥk ◦ β)

On L(m2,L(m1)) : 〈α, β〉khh = tr(k̂−1
◦

tα ◦ ĥh ◦ β)

On L(m2,L(m2)) : 〈α, β〉kkk = tr(k̂−1
◦

tα ◦ k̂k ◦ β).

Using the preceding definitions, we can write:

P(6)(φ)(X, Y ) = tr(ĥ−1
◦

tφ ◦
t ad12(φ(X)) ◦

tφ ◦k̂ ◦ φ ◦ ad12(φ(Y )) ◦ φ)

= 〈φ ◦ ad12(φ(X)) ◦ φ, φ ◦ ad12(φ(Y )) ◦ φ〉hk

=
t (φad12(φ)φ)(〈, 〉hk)(X, Y )

where φad12(φ)φ denotes the element of L(m1,L(m1,m2)) which associates φ ◦ ad12(φ(X)) ◦ φ to each X ∈ m1.
Thus, P̂(6)(φ) =

t (φad12(φ)φ) ◦ ĥk ◦ (φad12(φ)φ), therefore

tr(ĥ−1
◦ P̂(6)(φ)) = tr(ĥ−1

◦
t (φad12(φ)φ) ◦ ĥk ◦ (φad12(φ)φ))

= 〈φad12(φ)φ, φad12(φ)φ〉hhk .
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Thus, we have

V (6)(φ) =
1
4
‖φad12(φ)φ‖

2
hhk

which proves the positivity of this term.
Moreover, if we denote by Γ (6) the set of zeroes of V (6), we see immediately that:

Γ (6)
= {φ ∈ LH (m1,m2)/φ ◦ ad12(φ(X)) ◦ φ = 0 ∀X ∈ m1}.

Thus, we have a condition of the third-degree in φ, and if this condition is verified for every φ that is, if Γ (6)
=

LH (m1,m2), then V (6)
= 0.

Because of the positivity of 1
4 tr( f̂ −1

◦ D̂), V cannot be of degree 5, therefore it becomes a polynomial of degree 4
at most, whose quartic terms can be computed in a similar manner to give:

V (4)(φ) =
1
4
‖φad11(φ)− ad22(φ)φ + φad12φ‖

2
hhk +

1
4
‖ad12(φ)φ‖

2
hhh +

1
4
‖φad12(φ)‖

2
hkk +

1
4
‖φad12φ‖

2
khk

which proves the positivity of V (4).
Moreover, if we denote by Γ (4) the set of zeroes of V (4), we see immediately that Γ (4) is the set of the elements φ

in LH (m1,m2) that satisfy the quadratic conditions (C).
If these conditions are verified for every φ that is, if Γ (4)

= LH (m1,m2), then V (4)
= 0.

Because of the positivity of 1
4 tr( f̂ −1

◦ D̂), V cannot be of degree 3, therefore it becomes a polynomial of degree 2
at most. It is also possible to compute the quadratic terms that appear in 1

4 tr( f̂ −1
◦ D̂), which are necessarily positive,

but to get all the quadratic contributions in V , one has to include also the quadratic terms coming from 1
2 tr( f̂ −1

◦ B̂)
and tr( f̂ −1

◦ D̂h), and these have no reason to be of fixed sign.

Proposition 3.4. If the elements h and k, fixed respectively in SH++

2 (m1) and SH++

2 (m2), are chosen Ad(N (H))-
invariant, then the potential V (φ) is invariant under the action of the group N (H)|H.

Proof. The proof is similar to that of Proposition 2.2. �

Let us take the special case in which m2 is a Lie algebra. This case covers the known situations in which we
have Higgs fields as equivariant maps between two representation spaces. If m2 is a Lie algebra, then ad12 vanishes
identically, and therefore V (6)(φ) is zero. But in this case, we can verify that V (5)(φ) will also be zero. Thus, we are
left with a quartic potential which is exactly what we have in the known situations.

3.4. The Yang–Mills term and the kinetic term

As outlined in the first paragraph of Section 2.2, the Lagrangian of the multidimensional G-invariant gravity theory
reduces, after integration on the internal variables, to the Lagrangian of an Einstein–Yang–Mills theory coupled to a
scalar field f . We will begin by writing an intrinsic expression of this reduced Lagrangian, and then explain the
notations used while investigating each term

L(γ, α, f )(x) = −V (γ )(x)− V (Ω(q))+ K ( f (q))− V ( f (q)) where q ∈ Qx

where V stands for “potential” and K for “kinetic”. Explicitly,

L(γ, α, f )(x) = ρM (γ )(x)−
1
2
‖Ω̄(q)‖2

γ̃ (q)γ̃ (q) f̃ (q)
+

1
2
‖D f̂ (q)‖2

γ̃ (q) f (q) f ∗(q) + ρG/H ( f (q))

where ρ means “scalar curvature functional”. The term ρG/H ( f (q)) is the opposite of the potential for the Thiry
scalar field f , and has already been discussed in Sections 2.2 and 3.3. ρM (γ )(x) is the Lagrangian of the gravity
sector in M , and we’ll have nothing more to say about it. The remainder of this section will be devoted to the two
middle terms.

• The Yang–Mills term V (Ω(q)) =
1
2‖Ω̄(q)‖2

γ̃ (q)γ̃ (q) f̃ (q)
.

Ω denotes the curvature two-form Dα of the connection α. Let k be the Lie algebra of the gauge group N (H)|H .
Then Ω(q) is a k-valued antisymmetric bilinear form on Tq Q, and by horizontality of Ω , we can consider only its
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restriction to the horizontal subspace Zq = Kerα(q). We denote by Ω̄(q) : Zq −→ L(Zq , k) the linear map
canonically associated to Ω(q)|Zq×Zq . Let γ̃ (q) be the scalar product on Zq obtained by horizontal lift of γ (x),
and γ̄ (q) : Zq −→ Z∗

q the linear map canonically associated to γ̃ (q). Finally, let f̃ (q) be the restriction to k of
f (q), and f̄ (q) : k −→ k∗ the linear map canonically associated to f̃ (q).

Similarly to what we have done when expressing the potential of the scalar fields, we introduce the scalar
product:

On L(Zq , k) : 〈u, v〉
γ̃ (q) f̃ (q) = tr(γ̄ (q)−1

◦
t u ◦ f̄ (q) ◦ v) = γ (q) f (q)(u)(v)

which we use to define again the following scalar product:

On L(Zq ,L(Zq , k)) : 〈α, β〉
γ̃ (q)γ̃ (q) f̃ (q) = tr(γ̄ (q)−1

◦
tα ◦ γ (q) f (q) ◦ β).

Now we have introduced all the notations that give sense to the expression:

V (Ω(q)) =
1
2
‖Ω̄(q)‖2

γ̃ (q)γ̃ (q) f̃ (q)

but let us write it also in the expanded way:

V (Ω(q)) =
1
2
〈Ω̄(q), Ω̄(q)〉

γ̃ (q)γ̃ (q) f̃ (q)

=
1
2

tr(γ̄ (q)−1
◦

t Ω̄(q) ◦ γ (q) f (q) ◦ Ω̄(q))

=
1
2

tr(γ̄ (q)−1
◦ D̄)

where D̄ =
t Ω̄(q) ◦ γ (q) f (q) ◦ Ω̄(q) is a linear map from Zq to Z∗

q , to which is associated the following bilinear
form on Zq :

D(X, Y ) =
t Ω̄(q)(〈, 〉

γ̃ (q) f̃ (q))(X, Y )

= 〈
t Ω̄(q)(X), t Ω̄(q)(Y )〉

γ̃ (q) f̃ (q)

= tr(γ̄ (q)−1
◦

t Ω̄(q)(X) ◦ f̄ (q) ◦ Ω̄(q)(Y ))

for every X, Y ∈ Zq .
Our next purpose is to expand this Yang–Mills term with respect to our decomposition of f in terms of h, k, φ.

For this, we set k1 = k ∩ m1 and k2 = k ∩ m2, so that k = k1 ⊕ k2. Let π̄1 : k −→ k1 and π̄2 : k −→ k2 be the
corresponding projectors. We define:
. φ̄(q) = −prk2

|k1
, where prk2 is the orthogonal projector on k2 for the Euclidean structure defined by f̃ (q).

. ∀X1, Y1 ∈ k1, h̃(q)(X1, Y1) = f̃ (q)(X1 + φ̄(q)(X1), Y1 + φ̄(q)(Y1))

. k̃ = f̃|k2×k2

so that h̃(q) ∈ S2(k1), k̃(q) ∈ S2(k2), φ̄(q) ∈ L(k1, k2), and:

f̄ (q) =
t π̄1 ◦ h̄(q) ◦ π̄1 +

t (φ̄(q) ◦ π̄1 − π̄2) ◦ k̄(q) ◦ (φ̄(q) ◦ π̄1 − π̄2).

Finally, we set:

Ω̄1(q)(X) = π̄1 ◦ Ω̄(q)(X) ∈ L(Zq , k1)

Ω̄2(q)(X) = π̄2 ◦ Ω̄(q)(X) ∈ L(Zq , k2).

With all these definitions, we have:

D(X, Y ) = tr(γ̄ (q)−1
◦

t Ω̄1(q)(X) ◦ h̄(q) ◦ Ω̄1(q)(Y ))

= +tr(γ̄ (q)−1
◦

t Ω̄2(q)(X) ◦ k̄(q) ◦ Ω̄2(q)(Y ))

= +tr(γ̄ (q)−1
◦

t Ω̄1(q)(X) ◦
t φ̄(q) ◦ k̄(q) ◦ φ̄(q) ◦ Ω̄1(q)(Y ))

= −tr(γ̄ (q)−1
◦

t Ω̄1(q)(X) ◦
t φ̄(q) ◦ k̄(q) ◦ Ω̄2(q)(Y ))

= −tr(γ̄ (q)−1
◦

t Ω̄2(q)(X) ◦ k̄(q) ◦ φ̄(q) ◦ Ω̄1(q)(Y )).
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We can state now the following theorem:

Theorem 3.5. If the trivial representation of H lies completely either in m1 or in m2, then there is no direct
coupling between the scalar fields φ and the Yang–Mills strength Ω , and we have:

V (Ω(q)) =
1
2
‖Ω̄1(q)‖2

γ̃ (q)γ̃ (q)h̃(q)
+

1
2
‖Ω̄2(q)‖2

γ̃ (q)γ̃ (q)k̃(q)
.

Proof. It is not difficult to see that k carries the trivial representation of H (cf. [9] for example). The assumption of
the theorem implies then that at least one of the two subspaces k1 and k2 is zero. Therefore, we have L(k1, k2) = 0.
We deduce then that in the last expression of D(X, Y ), we have φ̄ = 0, and therefore we are left only with the first
two terms. �

• The kinetic term K ( f (q)) =
1
2‖D f̂ (q)‖2

γ̃ (q) f (q) f ∗(q).
We shall follow the same steps as for the Yang–Mills term. D f denotes the covariant derivative of f , therefore

D f (q) is a linear map from Tq Q to S2
H (m). By horizontality ofD f , we can consider only the restriction ofD f (q)

to the horizontal subspace Zq , and in fact we shall work with D f̂ (q) : Zq −→ LH (m,m∗). For every X ∈ Zq , we
have:

D f̂ (q)(X) = d f̂ (q)(X)+ ρ′

α(q)(X)( f̂ (q))

= d f̂ (q)(X)− (t adα(q)(X) ◦ f̂ (q))− ( f̂ (q) ◦ adα(q)(X))

(see the remark before Proposition 2.2). γ̄ (q) has been defined in the previous paragraph.
In the same spirit, we introduce the following scalar product:

On LH (m,m∗) : 〈u, v〉 f (q) f ∗(q) = tr( f̂ (q)−1
◦

t u ◦
t f̂ (q)−1

◦ v) = ̂f (q) f ∗(q)(u)(v)

which we use to define again the following scalar product:

On L(Zq ,LH (m,m∗)) : 〈α, β〉γ̃ (q) f (q) f ∗(q) = tr(γ̄ (q)−1
◦

tα ◦ ̂f (q) f ∗(q) ◦ β)

( ̂f (q) f ∗(q) : LH (m,m∗) −→ LH (m,m∗)∗ is the isomorphism canonically associated to 〈, 〉 f (q) f ∗(q)).
Now we have introduced all the notations that give sense to the expression:

K ( f (q)) =
1
2
‖D f̂ (q)‖2

γ̃ (q) f (q) f ∗(q)

but let us write it also in the expanded way:

K ( f (q)) =
1
2
〈D f̂ (q),D f̂ (q)〉γ̃ (q) f (q) f ∗(q)

=
1
2

tr(γ̄ (q)−1
◦

tD f̂ (q) ◦ ̂f (q) f ∗(q) ◦D f̂ (q))

=
1
2

tr(γ̄ (q)−1
◦ Ē)

where Ē =
tD f̂ (q) ◦ ̂f (q) f ∗(q) ◦ D f̂ (q) is a linear map from Zq to Z∗

q , to which is associated the following
bilinear form on Zq :

E(X, Y ) =
tD f̂ (q)(〈, 〉 f (q) f ∗(q))(X, Y )

= 〈
tD f̂ (q)(X), tD f̂ (q)(Y )〉 f (q) f ∗(q)

= tr( f̂ (q)−1
◦

tD f̂ (q)(X) ◦
t f̂ (q)−1

◦D f̂ (q)(Y ))

for every X, Y ∈ Zq .
Again, our next purpose is to expand this kinetic term with respect to our decomposition of f in terms of h, k,

φ. For this, we recall that:

f̂ (q) =
tπ1 ◦ ĥ(q) ◦ π1 +

t (φ(q) ◦ π1 − π2) ◦ k̂(q) ◦ (φ(q) ◦ π1 − π2)
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and

f̂ (q)−1
= (ι1 + ι2 ◦ φ(q)) ◦ ĥ(q)−1

◦
t (ι1 + ι2 ◦ φ(q))+ι2 ◦ k̂(q)−1

◦
t ι2

and we write t f̂ (q)−1. Then, we compute the covariant derivatives D f̂ (q)(Y ) and tD f̂ (q)(X) with the usual
Leibnitz rule for products, getting the sum of nine terms. Notice for example that:

D(tπ1 ◦ĥ(q) ◦ π1)(X)

=
tπ1 ◦ dĥ(q)(X) ◦ π1 − (t adα(q)(X) ◦

tπ1 ◦ ĥ(q) ◦ π1)− (tπ1 ◦ ĥ(q) ◦ π1 ◦ adα(q)(X))

=
tπ1 ◦ dĥ(q)(X) ◦ π1 − (tπ1 ◦

t ad(1)α(q)(X) ◦ ĥ(q) ◦ π1)− (tπ1 ◦ ĥ(q) ◦ ad(1)α(q)(X) ◦ π1)

=
tπ1 ◦ [dĥ(q)(X)− (t ad(1)α(q)(X) ◦ ĥ(q))− (ĥ(q) ◦ ad(1)α(q)(X))] ◦ π1

=
tπ1 ◦ Dĥ(q)(X) ◦ π1

where Dĥ(q) is naturally defined by:

Dĥ(q)(X) = dĥ(q)(X)− (t ad(1)α(q)(X) ◦ ĥ(q))− (ĥ(q) ◦ ad(1)α(q)(X))

= dĥ(q)(X)+ η1
α(q)(X)(ĥ(q)).

Similarly,

D(tπ2 ◦ k̂(q) ◦ π2)(X) =
tπ2 ◦ Dk̂(q)(X) ◦ π2

where Dk̂(q) is naturally defined by:

Dk̂(q)(X) = dk̂(q)(X)− (t ad(2)α(q)(X) ◦ k̂(q))− (k̂(q) ◦ ad(2)α(q)(X))

= dk̂(q)(X)+ η2
α(q)(X)(k̂(q)).

As for Dφ(q), it is naturally defined by:

Dφ(q)(X) = dφ(q)(X)+ η0
α(q)(X)(φ(q))

= dφ(q)(X)+ (ad(2)α(q)(X) ◦ φ(q))− (φ(q) ◦ ad(1)α(q)(X)).

Finally, we replace in the expression of E(X, Y ) and expand! The long calculation gives a large number of terms,
between which we discover happily an equally large number of cancellations, and we are left finally with the terms:

‖Dφ(q)‖2
h(q)h(q)k(q) + four terms depending on Dk

Thus, we can state the following result:

Theorem 3.6. If, in the decomposition of f in terms of h, k, φ, the matter field k is taken constant, then the kinetic
term of the scalar field φ is proportional to the natural term: 1

2‖Dφ(q)‖2
h(q)h(q)k(q).

This result agrees with that of [5], where the field k was taken constant: the same kinetic term is obtained for φ.

We conclude this section by checking the gauge invariance of the theory:

Proposition 3.7. If we freeze the scalar fields h : Q −→ SH
2 (m1) and k : Q −→ SH

2 (m2) by taking them
constant, the value of each being Ad(N (H))-invariant and positive definite, and if the trivial representation of H
lies completely either in m1 or in m2, then the Lagrangian L(γ, α, φ) is invariant under the action of the group
G = C∞

N (H)|H (Q, N (H)|H) of gauge transformations.

Proof. We already mentioned the invariance of the potential V (φ) in Proposition 3.4. The gravity sector in M brings
no problem. We are left with the Yang–Mills term of Theorem 3.5 and the natural kinetic term of Theorem 3.6. And
these are easily checked to be invariant when a gauge transformation n : Q −→ N (H)|H acts on all the fields. �

4. Example with G = SU(5), H ' U(1) and N(H)|H ' T3

We begin by setting some notations that we are going to use in the following.
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• For each n ∈ N∗, Tn denotes the n-dimensional torus U (1)× · · · × U (1).
• For each p ∈ Z, Cp denotes the vector space C endowed with the irreducible representation of U (1) labeled by

the integer p.

U (1) is embedded in SU (5) by the following injective homomorphism of Lie groups:
λ : U (1) −→ SU (5) defined by:

λ(eiθ ) =


eiθ 0 0 0 0
0 ei2θ 0 0 0
0 0 ei3θ 0 0
0 0 0 ei4θ 0
0 0 0 0 e−i10θ

 .
We set H = λ(U (1)). The normalizer of H in G is then:

N (H) =




eiθ1 0 0 0 0
0 eiθ2 0 0 0
0 0 eiθ3 0 0
0 0 0 eiθ4 0
0 0 0 0 e−i(θ1+θ2+θ3+θ4)

 ; θ1, θ2, θ3, θ4 ∈ R

 ' T4.

First, we study the adjoint action of H on g = su(5). Let h = λ(eiθ ) ∈ H , and

A =


iy11 −z̄21 z13 z14 z15
z21 iy22 −z̄32 z24 z25

−z̄13 z32 iy33 −z̄43 z35
−z̄14 −z̄24 z43 iy44 z45
−z̄15 −z̄25 −z̄35 −z̄45 −i(y11 + y22 + y33 + y44)

 ∈ su(5).

Then:

h Ah−1
=


iy11 −e−iθ z̄21 e−i2θ z13 e−i3θ z14 ei11θ z15

eiθ z21 iy22 −e−iθ z̄32 e−i2θ z24 ei12θ z25
−ei2θ z̄13 eiθ z32 iy33 −e−iθ z̄43 ei13θ z35
−ei3θ z̄14 −ei2θ z̄24 eiθ z43 iy44 ei14θ z45

−e−i11θ z̄15 −e−i12θ z̄25 −e−i13θ z̄35 −e−i14θ z̄45 −i(y11 + y22 + y33 + y44)

 .
We deduce the decomposition of g = su(5) under the adjoint action of H :

g = h ⊕ m = h ⊕ k ⊕
1

l21 ⊕
1

l32 ⊕
1

l43 ⊕
−2
l13 ⊕

−2
l24 ⊕

−3
l14 ⊕

11
l15 ⊕

12
l25 ⊕

13
l35 ⊕

14
l45

where:

•

h =




iθ 0 0 0 0
0 i2θ 0 0 0
0 0 i3θ 0 0
0 0 0 i4θ 0
0 0 0 0 −i10θ

 ; θ ∈ R

 ' Lie(H) ' u(1) ' iR

•

k =




ix1 0 0 0 0
0 ix2 0 0 0
0 0 ix3 0 0
0 0 0 −i(x1 + x2 + x3) 0
0 0 0 0 0

 ; x1, x2, x3 ∈ R

 ' Lie(N (H)|H) ' Lie(T3) ' R3.
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•

For 1 ≤ j < k ≤ 5, l jk =

{(
z

−z̄

)
; z ∈ C

}
' C.

•

For 1 ≤ k < j ≤ 5, l jk =

{(
−z̄

z

)
; z ∈ C

}
' C

(in the last two matrices, z is the ( j, k)-entry and −z̄ is the (k, j)-entry).

h and k carry the trivial representation of H , and for 1 ≤ j < k ≤ 5,
p

l jk ' Cp.
Second, we study the adjoint action of N (H) on g = su(5). Noticing that N (H) ' T4 is nothing but the natural

maximal torus of su(5), we see immediately that the decomposition of g under N (H) reads:

g = h ⊕ m = h ⊕ k ⊕

(−1,1,0,0)
l21 ⊕

(0,−1,1,0)
l32 ⊕

(0,0,−1,1)
l43 ⊕

(1,0,−1,0)
l13 ⊕

(0,1,0,−1)
l24 ⊕

(1,0,0,−1)
l14

⊕

(2,1,1,1)
l15 ⊕

(1,2,1,1)
l25 ⊕

(1,1,2,1)
l35 ⊕

(1,1,1,2)
l45

where
(p1,p2,p3,p4)

l jk ' C carrying the irreducible representation of T4 labeled by the element (p1, p2, p3, p4) ∈ Z4.
Let us define the two following subspaces of g:

m1 = k ⊕
1

l21 ⊕
1

l32 ⊕
−2
l13

m2 =
−3
l14 ⊕

1
l43 ⊕

−2
l24 ⊕

11
l15 ⊕

12
l25 ⊕

13
l35 ⊕

14
l45 .

It is clear that m1 and m2 are Ad(N (H))-invariant complementary subspaces of m, and thus we have an Ad(N (H))-
invariant splitting m = m1 ⊕ m2. We deduce a space of Higgs fields:

LH (m1,m2) = L(
1

l21 ⊕
1

l32,
1

l43)⊕ L(
−2
l13,

−2
l24)

It is not difficult to see that dimLH (m1,m2) = 6 (on R).
A natural basis for the vector space m is given by the following matrices:

i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −i 0
0 0 0 0 0

 ,


0 0 0 0 0
0 i 0 0 0
0 0 0 0 0
0 0 0 −i 0
0 0 0 0 0

 ,


0 0 0 0 0
0 0 0 0 0
0 0 i 0 0
0 0 0 −i 0
0 0 0 0 0

 (basis for k);

for 1 ≤ j < k ≤ 5, a jk =

(
1

−1

)
, b jk =

(
i

i

)
(basis for l jk).

for 1 ≤ k < j ≤ 5, a jk =

(
−1

1

)
, b jk =

(
i

i

)
(basis for l jk).

(In a jk , 1 is the ( j, k)-entry and −1 is the (k, j)-entry, etc.)
Let φ ∈ LH (m1,m2). In fact, φ is completely determined by its restriction (also denoted by φ):

φ :
1

l21 ⊕
1

l32 ⊕
−2
l13 −→

1
l43 ⊕

−2
l24 .

We set l1 =
1

l21 ⊕
1

l32 ⊕
−2
l13, l2 =

1
l43 ⊕

−2
l24, and define the six real numbers ϕ21, ψ21, ϕ32, ψ32, ϕ13, ψ13 by:

φ(a21) = ϕ21a43 + ψ21b43 (and φ(b21) = −ψ21a43 + ϕ21b43)

φ(a32) = ϕ32a43 + ψ32b43 (and φ(b32) = −ψ32a43 + ϕ32b43)

φ(a13) = ϕ13a24 + ψ13b24 (and φ(b13) = −ψ13a24 + ϕ13b24).
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The real numbers ϕ21, ψ21, ϕ32, ψ32, ϕ13, ψ13 constitute the six components of the Higgs field φ in the bases of m1
and m2 defined above.

We shall need the three complex components of φ, defined by:

φ21 = ϕ21 + iψ21, φ32 = ϕ32 + iψ32, φ13 = ϕ21 + iψ13.

If A =


0 −z̄21 z13 0 0

z21 0 −z̄32 0 0
−z̄13 z32 0 0 0

0 0 0 0 0
0 0 0 0 0

 ∈ l1,

then φ(A) =


0 0 0 0 0
0 0 0 φ13z13 0
0 0 0 −φ̄21 z̄21 − φ̄32 z̄32 0
0 −φ̄13 z̄13 φ21z21 + φ32z32 0 0
0 0 0 0 0

 ∈ l2.

Let us study the representation of N (H)|H on LH (l1, l2). For this, we first look at the representation of N (H) on
LH (l1, l2):

Given

P =


eiθ1 0 0 0 0
0 eiθ2 0 0 0
0 0 eiθ3 0 0
0 0 0 eiθ4 0
0 0 0 0 e−i(θ1+θ2+θ3+θ4)

 ∈ N (H),

we have

AdP−1(A) = P−1 AP =


0 −ei(−θ1+θ2) z̄21 ei(−θ1+θ3)z13 0 0

e−i(−θ1+θ2)z21 0 −ei(−θ2+θ3) z̄32 0 0
−e−i(−θ1+θ3) z̄13 e−i(−θ2+θ3)z32 0 0 0

0 0 0 0 0
0 0 0 0 0



and AdP ◦ φ ◦ AdP−1(A) =


0 0 0 0 0
0 0 0 α 0
0 0 0 −β̄ 0
0 −ᾱ β 0 0
0 0 0 0 0


with α = ei(θ2−θ4−θ1+θ3)φ13z13 and β = e−i(θ3−θ4−θ1+θ2)φ21z21 + e−i(θ3−θ4−θ2+θ3)φ32z32.

This shows that φ13, φ21 and φ32 transform respectively according to the representations (−1, 1, 1,−1),
(1,−1,−1, 1) and (0, 1,−2, 1) of T4

' N (H).

Now we turn to the action of N (H)|H . First, we define an homomorphism of Lie groups f : N (H) −→ G by
setting:

f (P) =


ei(4θ1−θ4) 0 0 0 0

0 ei(3θ1−θ3) 0 0 0
0 0 ei(2θ1−θ2) 0 0
0 0 0 e−i(9θ1−θ2−θ3−θ4) 0
0 0 0 0 1

 .
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Next, we set:

K =




eix1 0 0 0 0
0 eix2 0 0 0
0 0 eix3 0 0
0 0 0 e−i(x1+x2+x3) 0
0 0 0 0 1

 ; x1, x2, x3 ∈ R

 .
It is not difficult to seethat Ker f = H and Im f = K . Therefore, we have a surjective homomorphism that we also
denote by f , and this f : N (H) −→ K induces an isomorphism f̄ : N (H)|H −→ K . Thus, N (H)|H ' K ' T3.

Now if ρ : N (H) −→ GL(LH (l1, l2)) is the representation previously computed (ρ(P)(φ) = AdP ◦ φ ◦ AdP−1 ),
we define ρ̄ : K −→ GL(LH (l1, l2)) the following way: for each Q ∈ K , let ρ̄(Q) = ρ(P), where P is any element
of N (H) such that f (P) = Q. For example, one can take:

P =


eix1 0 0 0 0
0 ei(2x1−x3) 0 0 0
0 0 ei(3x1−x2) 0 0
0 0 0 ei3x1 0
0 0 0 0 e−i(9x1−x2−x3)

 .

We have previously shown that the Higgs field φ transforms under the action of P ∈ N (H) according to:
φ13 −→ ei(−θ1+θ2+θ3−θ4)φ13

φ21 −→ ei(θ1−θ2−θ3+θ4)φ21

φ32 −→ ei(θ2−2θ3+θ4)φ32.

We deduce that φ transforms under the action of Q ∈ K according to:
φ13 −→ ei(x1−x2−x3)φ13

φ21 −→ ei(−x1+x2+x3)φ21

φ32 −→ ei(−x1+2x2−x3)φ32.

Thus, φ13, φ21 and φ32 belong respectively to the representations (1,−1,−1), (−1, 1, 1) and (−1, 2,−1) of
T3

' N (H)|H .
The sixth degree term of the potential of the scalar field φ is proportional to the squared norm of the tensor

φad12(φ)φ, which can be identified with the bilinear map Bφ : l1 × l1 −→ l2 defined by: Bφ(X, X ′) =

φ(π1[φ(X), φ(X ′)]).
Let

X =


0 −z̄21 z13 0 0

z21 0 −z̄32 0 0
−z̄13 z32 0 0 0

0 0 0 0 0
0 0 0 0 0

 and X ′
=


0 −z̄′

21 z′

13 0 0
z′

21 0 −z̄′

32 0 0
−z̄′

13 z′

32 0 0 0
0 0 0 0 0
0 0 0 0 0

 ∈ l1.

Then:

π1[φ(X), φ(X ′)] =


0 0 0 0 0
0 0 γ 0 0
0 −γ̄ 0 0 0
0 0 0 0 0
0 0 0 0 0


where γ = φ13z13(φ21z′

21 + φ32z′

32)− φ13z′

13(φ21z21 + φ32z32).
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We deduce that:

Bφ(X, X ′) =


0 0 0 0 0
0 0 0 0 0
0 0 0 φ̄32γ 0
0 0 −φ32γ̄ 0 0
0 0 0 0 0


with

φ̄32γ = φ̄32φ13z13(φ21z′

21 + φ32z′

32)− φ̄32φ13z′

13(φ21z21 + φ32z32)

= φ̄32φ13φ21z13z′

21 + φ̄32φ13φ32z13z′

32 − φ̄32φ13φ21z′

13z21 − φ̄32φ13φ32z′

13z32

= φ̄32φ13φ21(z13z′

21 − z′

13z21)+ φ̄32φ13φ32(z13z′

32 − z′

13z32).

Thus, Bφ can be identified with the antisymmetric complex bilinear form (also denoted by Bφ):

Bφ : l1 × l1 −→ C

defined by: Bφ(X, X ′) = φ̄32φ13φ21(z13z′

21 − z′

13z21) + φ̄32φ13φ32(z13z′

32 − z′

13z32). l1 is isomorphic to the three-
dimensional complex vector space C3. If we set (e1, e2, e3) = (a21, a32, a13), then (ei )1≤i≤3 is a basis of l1, and Bφ
is completely determined by the 3 complex numbers Bφ(ei , e j ), 1 ≤ i < j ≤ 3. It is easy to check that:

Bφ(a21, a32) = 0
Bφ(a21, a13) = φ̄32φ13φ21

Bφ(a32, a13) = φ̄32φ13φ32.

Finally, we need to define the Ad(N (H))-invariant scalar products h and k on l1 and l2 respectively, and use them to
compute the squared norm of the tensor φad12(φ)φ. We consider the natural Ad(SU (5))-invariant scalar product on
su(5) defined by: 〈A, B〉 = −

1
2 tr(AB) for every A, B ∈ su(5). Then, h and k are defined to be the restrictions of 〈, 〉

to l1 × l1 and l2 × l2 respectively. Then we take the restriction of k to l43 and obtain the canonical scalar product on
C ' l43.

Thus, we have in this model: V 6(φ) ∝ |φ̄32φ13φ21|
2
+ |φ̄32φ13φ32|

2.

5. Conclusion

In the context of Kaluza–Klein theory with, as internal spaces, copies of a homogeneous space G/H , we defined a
new type of scalar field as intertwining operators between two Ad(N (H))-invariant complementary subspaces of the
orthogonal complement of h in g for a fixed bi-invariant metric on G.

We studied the potential of those scalar fields and found it to be a polynomial of the sixth degree at most, bounded
from below when it was exactly of degree 6 or 4. And we found the necessary and sufficient conditions in which the
degree is 6 or 4.

We investigated an eventual coupling of the scalar fields with the Yang–Mills strength, and found that there is no
such direct coupling if we choose the two complementary subspaces in such a way that all the trivial representation is
contained in only one of them. We also computed the kinetic term of the scalar fields and found a natural result. An
example leading to an abelian gauge theory was given.

Our scalar fields exhibit therefore properties that are very close to those of the physical Higgs fields, and they have
been constructed in a natural way, by looking at hyperbolic directions in the space of Thiry scalar fields, this last one
appearing whenever one takes a gravitational theory with some symmetry.

It would seem interesting to carry further the study of the potential of such “canonical Higgs fields”, looking for
example at the corresponding symmetry breaking schemes, and seeking what happens at the quantum level. Soliton-
like solutions may also appear in the BPS limit, and the introduction of supersymmetry could also be relevant to make
contact with certain types of dualities.

This work is being extended to the supersymmetric level, where we can expect to find a more natural origin of our
canonical Higgs fields (free from an arbitrary choice of the splitting), arising from supergravity theories.
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Appendix. Example with G = SU(n), H ' U(1) and N(H)|H ' Tn−2

We begin by setting some notation that we are going to use in the following.

• For each n ∈ N∗, Tn denotes the n-dimensional torus U (1)× · · · × U (1).
• For each p ∈ Z, Cp denotes the vector space C endowed with the irreducible representation of U (1) labeled by

the integer p.
• For 1 ≤ j, k ≤ n, E jk denotes the n × n matrix whose all entries are zero except the ( j, k)-entry which is equal to

1.

U (1) is embedded in SU (n) by the following injective homomorphism of Lie groups: λm,l : U (1) −→ SU (n)
defined by:

λm,l(eiθ ) = diag(eimθ , ei(m−l)θ , ei(m−2l)θ , . . . , ei(m−(n−2)l)θ , e−i(n−1)[m−(n−2) l
2 ]θ )

where m and l are integers. We set H = λm,l(U (1)).
We shall focus on the interesting case l 6= 0. Here,

N (H) = {diag(eiθ1 , . . . , eiθn−1 , e−i(θ1+···+θn−1)); θ1, . . . , θn−1 ∈ R}.

Therefore, N (H) ' Tn−1.
First, we study the adjoint action of H on g = su(n). Let h = λm,l(eiθ ) ∈ H , and A = [z jk] ∈ su(n). We have to

compute h Ah−1
= [zh

jk], which is facilitated by the fact that h is a diagonal matrix:

• For 1 ≤ j ≤ n − 1, zh
j j = ei(m−( j−1)l)θ z j j e−i(m−( j−1)l)θ . Therefore zh

j j = z j j (which is true also for j = n), so
the diagonal elements of A are not changed.

• For 1 ≤ j < k ≤ n − 1, zh
jk = ei(m−( j−1)l)θ z jke−i(m−(k−1)l)θ

= ei(k− j)lθ z jk .

• For 1 ≤ j ≤ n − 1 and k = n, zh
jn = ei(m−( j−1)l)θ z jne−i(n−1)[m−(n−2) l

2 ]θ
= ei[nm−(n2

−3n+2 j) l
2 ]θ z jn .

We deduce the decomposition of g = su(n) under the adjoint action of H :

g = h ⊕ m = h ⊕ k ⊕

n−2⊕
r=1

n−(r+1)⊕
j=1

l j, j+r ⊕

n−1⊕
s=1

lsn

where:

h =

{
diag

(
imθ, i(m − l)θ, i(m − 2l)θ, . . . , i(m − (n − 2)l)θ,−i(n − 1)

[
m − (n − 2)

l
2

]
θ

)
; θ ∈ R

}
' Lie(H) ' u(1) ' iR

k = {diag(ix1, . . . , ixn−2,−i(x1 + · · · + xn−2), 0); x1, . . . , xn−2 ∈ R} ' Rn−2

l jk = {zE jk − z̄Ek j ; z ∈ C} ' C ( j < k)

(and m = k ⊕
⊕n−2

r=1
⊕n−(r+1)

j=1 l j, j+r ⊕
⊕n−1

s=1 lsn)
h and k carry the trivial representation of H , and:

• for 2 ≤ r + 1 ≤ n − 1 and 1 ≤ j ≤ n − (r + 1), l j, j+r ' Crl
• for 1 ≤ s ≤ n − 1, lsn ' Cnm−(n2−3n+2s) l

2
.

Second, we study the adjoint action of N (H) on g = su(n). Noticing that N (H) ' Tn−1 is nothing but the natural
maximal torus of su(n), we see immediately that the decomposition of g under N (H) reads:
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g = h ⊕ m = h ⊕ k ⊕

⊕
1≤ j<k≤n−1

l jk ⊕

n−1⊕
s=1

lsn

where:

• l jk ' C carrying the irreducible representation of Tn−1 labeled by the element (0, . . . , 1, . . . ,−1, . . . , 0) ∈ Zn−1,
1 being in the j th place, −1 in the kth place, and 0 in the n − 3 remaining places.

• lsn ' C carrying the irreducible representation of Tn−1 labeled by the element (1, . . . , 2, . . . , 1, . . . , 1) ∈ Zn−1, 2
being in the sth place, and 1 in the n − 2 remaining places.

Let us define the two following subspaces of g:

m1 = k ⊕

n−3⊕
r=1

n−(r+2)⊕
j=1

l j, j+r

m2 = l1,n−1 ⊕

n−3⊕
r=1

ln−1−r,n−1 ⊕

n−1⊕
s=1

lsn .

It is clear that m1 and m2 are Ad(N (H))-invariant complementary subspaces of m, and thus we have an Ad(N (H))-
invariant splitting m = m1 ⊕ m2. We deduce a space of Higgs fields:

LH (m1,m2) =

n−3⊕
r=1

L
(

n−(r+2)⊕
j=1

l j, j+r , ln−1−r,n−1

)
.

The dimension of LH (m1,m2) can be easily computed:

dimLH (m1,m2) = 2
n−3∑
r=1

[n − (r + 2)].1 = (n − 2)(n − 3).

A natural basis for the vector space m is given by the following matrices:

i(E j j − En−1,n−1), 1 ≤ j ≤ n − 2 (basis for k).

a jk = E jk − Ek j and b jk = i(E jk + Ek j ), 1 ≤ j < k ≤ n (basis for l jk).

This basis is adapted to our decompositions, since the vectors:
i(E j j − En−1,n−1), 1 ≤ j ≤ n − 2, a j, j+r and b j, j+r for 1 ≤ r ≤ n − 3 and 1 ≤ j ≤ n − (r + 2) form a basis of

the subspace m1, and the vectors:
a1,n−1, b1,n−1, an−1−r,n−1 and bn−1−r,n−1 for 1 ≤ r ≤ n − 3, asn and bsn for 1 ≤ s ≤ n − 1 form a basis of the

subspace m2.
Let φ ∈ LH (m1,m2). We have φ(i(E j j − En−1,n−1)) = 0.
We define the real numbers ϕ j, j+r , ψ j, j+r for 1 ≤ r ≤ n − 3 and 1 ≤ j ≤ n − (r + 2) by:

φ(a j, j+r ) = ϕ j, j+r an−1−r,n−1 + ψ j, j+r bn−1−r,n−1

φ(b j, j+r ) = −ψ j, j+r an−1−r,n−1 + ϕ j, j+r bn−1−r,n−1.

The ϕ j, j+r and ψ j, j+r constitute the (n −2)(n −3) components of the Higgs field φ in the bases of m1 and m2 defined
above.

Third, we study the representation of N (H)|H on LH (m1,m2). For this, we first look at the representation of
N (H) on LH (m1,m2):

Given P = diag(eiθ1 , . . . , eiθn−1 , e−i(θ1+···+θn−1)) ∈ N (H), and A = [z jk] ∈ m1, we begin by computing
AdP−1(A) = P−1 AP = [z P−1

jk ], which again is facilitated because P is diagonal.

• For 1 ≤ j ≤ n − 1, z P−1

j j = e−iθ j z j j eiθ j . Therefore z P−1

j j = z j j (which is true also for j = n), so the diagonal
elements of A are not changed.

• For 1 ≤ j < k ≤ n − 2, z P−1

jk = e−iθ j z jkeiθk = ei(−θ j +θk )z jk .
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Then, we compute AdP ◦ φ ◦ AdP−1(A). Writing

A =

n−2∑
j=1

x j i(E j j − En−1,n−1)+

n−3∑
r=1

n−(r+2)∑
j=1

(x j, j+r a j, j+r + y j, j+r b j, j+r )

and noting that x jka jk + y jkb jk = z jk E jk − z̄ jk Ek j if z jk = x jk + iy jk , we see that:

AdP−1(A) =

n−2∑
j=1

x j i(E j j − En−1,n−1)+

n−3∑
r=1

n−(r+2)∑
j=1

(ei(−θ j +θ j+r )z j, j+r E j, j+r − e−i(−θ j +θ j+r ) z̄ j, j+r E j+r, j )

and we deduce, letting φ jk = ϕ jk + iψ jk , that:

φ(AdP−1(A)) =

n−3∑
r=1

(
n−(r+2)∑

j=1

ei(−θ j +θ j+r )φ j, j+r z j, j+r En−1−r,n−1

−

n−(r+2)∑
j=1

e−i(−θ j +θ j+r )φ̄ j, j+r z̄ j, j+r En−1,n−1−r

)
.

Finally,

AdP (φ(AdP−1(A))) =

n−3∑
r=1

(
n−(r+2)∑

j=1

ei(θn−1−r,n−1−θn−1−θ j +θ j+r )φ j, j+r z j, j+r En−1−r,n−1

−

n−(r+2)∑
j=1

e−i(θn−1−r,n−1−θn−1−θ j +θ j+r )φ̄ j, j+r z̄ j, j+r En−1,n−1−r

)
.

We define the homomorphism of Lie groups f : N (H) −→ G by:

f (P) = diag(ei[(1−(n−2) l
m )θ1−θn−1], . . . , ei[(1−

l
m )θ1−θ2], e−i[(n−2)(1−(n−1) l

2m )θ1−(θ2+···+θn−1)], 1)

for each P = diag(eiθ1 , . . . , eiθn−1 , e−i(θ1+···+θn−1)) ∈ N (H).
We see that Ker f = H , and if we set K = {diag(eix1 , . . . , eixn−2 , e−i(x1+···+xn−2), 1); x1, . . . , xn−2 ∈ R}, then

K = Im f , and we obtain a surjective homomorphism that we also denote by f . Thus, f : N (H) −→ K
induces an isomorphism f̄ : N (H)|H −→ K . It is easy now to explicit the action of N (H)|H on LH (m1,m2):
if ρ : N (H) −→ GL(LH (m1,m2)) is the representation previously computed (ρ(P)(φ) = AdP ◦ φ ◦ AdP−1 ), we
define ρ̄ : K −→ GL(LH (m1,m2)) the following way: for each Q = diag(eix1 , . . . , eixn−2 , e−i(x1+···+xn−2), 1) ∈ K ,
let ρ̄(Q) = ρ(P), where P is any element of N (H) such that f (P) = Q. For example, one can take P =

diag(eix1 , ei[(1−
l
m )x1−xn−2], . . . , ei[(1−(n−3) l

m )x1−x2], e−i(n−2) l
m x1 , e−i[(n−2)(1−(n−1) l

2m )x1−(x2+···+xn−2)]).
We have shown that the Higgs field φ transform under the action of P = diag(eiθ1 , . . . , eiθn−1 , e−i(θ1+···+θn−1)) ∈

N (H) according to:

φ j, j+r −→ ei(θn−1−r,n−1−θn−1−θ j +θ j+r )φ j, j+r .

Using the relations:

θ j =

(
1 − ( j − 1)

l
m

)
x1 − xn− j (for j ≥ 2)

θ j+r =

(
1 − ( j + r − 1)

l
m

)
x1 − xn− j−r

· · ·

θn−1−r =

(
1 − (n − r − 2)

l
m

)
x1 − xr+1

θn−1 =

(
1 − (n − 2)

l
m

)
x1 − x1

(
= −(n − 2)

l
m

x1

)
.
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We derive the transformation rules of φ under the action of Q = diag(eix1 , . . . , eixn−2 , e−i(x1+···+xn−2), 1):

φ j, j+r −→ ei(x1−xr+1+xn− j −xn− j−r )φ j, j+r (for j ≥ 2).

Our final task is the computation of the Higgs potential of this model. For this, we shall need first some structure
constants which are given by the following lemma:

Lemma A.1. (0) [E jk, E j ′k′ ] = δk j ′ E jk′ − δk′ j E j ′k
(1) [a jk, a j ′k′ ] = δk j ′a jk′ − δk′ j a j ′k − δkk′a j j ′ − δ j j ′akk′

(2) [a jk, b j ′k′ ] = δk j ′b jk′ − δk′ j b j ′k + δkk′b j j ′ − δ j j ′bkk′

(3) [b jk, a j ′k′ ] = δk j ′b jk′ − δk′ j b j ′k − δkk′b j j ′ + δ j j ′bkk′

(4) [b jk, b j ′k′ ] = −δk j ′a jk′ + δk′ j a j ′k − δkk′a j j ′ − δ j j ′akk′ .

Proof. (0) follows immediately by expressing the matrix product of E jk and E j ′k′ in terms of Kronecker symbols.
For (1),

[a jk, a j ′k′ ] = [E jk − Ek j , E j ′k′ − Ek′ j ′ ]

= [E jk, E j ′k′ ] − [E jk, Ek′ j ′ ] − [Ek j , E j ′k′ ] + [Ek j , Ek′ j ′ ]

= δk j ′ E jk′ − δk′ j E j ′k − δkk′ E j j ′ + δ j ′ j Ek′k − δ j j ′ Ekk′ + δk′k E j ′ j + δ jk′ Ek j ′ − δ j ′k Ek′ j

= δk j ′a jk′ − δk′ j a j ′k − δkk′a j j ′ − δ j j ′akk′ .

The computations are similar for (2), (3) and (4). �

Next, we have to find the components of the tensor φad12(φ)φ, which can be viewed as the bilinear map
Bφ : m1 × m1 −→ m2 defined by: Bφ(X, Y ) = φ(π1[φ(X), φ(Y )]). Thus, we need to express the components
of Bφ(a j, j+r , a j ′, j ′+r ′), Bφ(a j, j+r , b j ′, j ′+r ′), etc. in the corresponding basis of m2

[φ(a j, j+r ), φ(a j ′, j ′+r ′)]

= [ϕ j, j+r an−1−r,n−1 + ψ j, j+r bn−1−r,n−1, ϕ j ′, j ′+r ′an−1−r ′,n−1 + ψ j ′, j ′+r ′bn−1−r ′,n−1]

= ϕ j, j+rϕ j ′, j ′+r ′(δr ′0an−1−r,n−1 − δr0an−1−r ′,n−1 − an−1−r,n−1−r ′ − δrr ′an−1,n−1)

+ϕ j, j+rψ j ′, j ′+r ′(δr ′0bn−1−r,n−1 − δr0bn−1−r ′,n−1 + bn−1−r,n−1−r ′ − δrr ′bn−1,n−1)

+ψ j, j+rϕ j ′, j ′+r ′(δr ′0bn−1−r,n−1 − δr0bn−1−r ′,n−1 − bn−1−r,n−1−r ′ + δrr ′bn−1,n−1)

+ψ j, j+rψ j ′, j ′+r ′(−δr ′0an−1−r,n−1 + δr0an−1−r ′,n−1 − an−1−r,n−1−r ′ − δrr ′an−1,n−1).

In particular, noticing that a jk = −ak j (which implies a j j = 0) and that b jk = bk j , we have:

[φ(a j, j+r ), φ(a j ′, j ′)] = 2ϕ j, j+rψ j ′, j ′bn−1−r,n−1 − 2ψ j, j+rψ j ′, j ′an−1−r,n−1 if r 6= 0
[φ(a j, j ), φ(a j ′, j ′+r ′)] = −2ψ j, jϕ j ′, j ′+r ′bn−1−r ′,n−1 + 2ψ j, jψ j ′, j ′+r ′an−1−r ′,n−1 if r ′

6= 0
[φ(a j, j ), φ(a j ′, j ′)] = 0
[φ(a j, j+r ), φ(a j ′, j ′+r )] = (ϕ j, j+rψ j ′, j ′+r ′ − ψ j, j+rϕ j ′, j ′+r )(bn−1−r,n−1−r − bn−1,n−1) if r 6= 0

[φ(a j, j+r ), φ(a j ′, j ′+r ′)] = −ϕ j, j+rϕ j ′, j ′+r ′an−1−r,n−1−r ′ + ϕ j, j+rψ j ′, j ′+r ′bn−1−r,n−1−r ′

−ψ j, j+rϕ j ′, j ′+r ′bn−1−r,n−1−r ′ − ψ j, j+rψ j ′, j ′+r ′an−1−r,n−1−r ′

if r 6= 0, r ′
6= 0 and r 6= r ′.

If 1 ≤ r − r ′
≤ n − 3 and 1 ≤ n − 1 − r ≤ n − (r − r ′

+ 2) then an−1−r,n−1−r ′ ∈ m1 and bn−1−r,n−1−r ′ ∈ m1.
Therefore,

π1([φ(a j, j+r ), φ(a j ′, j ′+r ′)]) = (−ϕ j, j+rϕ j ′, j ′+r ′ − ψ j, j+rψ j ′, j ′+r ′)an−1−r,n−1−r ′

+ (ϕ j, j+rψ j ′, j ′+r ′ − ψ j, j+rϕ j ′, j ′+r ′)bn−1−r,n−1−r ′ .

Using the fact that:

φ(an−1−r,n−1−r ′) = ϕn−1−r,n−1−r ′an−1−(r−r ′),n−1 + ψn−1−r,n−1−r ′bn−1−(r−r ′),n−1

φ(bn−1−r,n−1−r ′) = −ψn−1−r,n−1−r ′an−1−(r−r ′),n−1 + ϕn−1−r,n−1−r ′bn−1−(r−r ′),n−1
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we deduce:

Bφ(a j, j+r , a j ′, j ′+r ′) = (−ϕ j, j+rϕ j ′, j ′+r ′ϕn−1−r,n−1−r − ψ j, j+rψ j ′, j ′+r ′ϕn−1−r,n−1−r ′

−ϕ j, j+rψ j ′, j ′+r ′ψn−1−r,n−1−r ′ + ψ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′)an−1−(r−r ′),n−1

+ (−ϕ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′ − ψ j, j+rψ j ′, j ′+r ′ψn−1−r,n−1−r ′

+ϕ j, j+rψ j ′, j ′+r ′ϕn−1−r,n−1−r ′ − ψ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′)bn−1−(r−r ′),n−1.

Completely analogous calculations lead to:

Bφ(a j, j+r , b j ′, j ′+r ′) = (ϕ j, j+rψ j ′, j ′+r ′ϕn−1−r,n−1−r ′ − ψ j, j+rϕ j ′, j ′+r ′ϕn−1−r,n−1−r ′

−ϕ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′ − ψ j, j+rψ j ′, j ′+r ′ψn−1−r,n−1−r ′)an−1−(r−r ′),n−1
+ (ϕ j, j+rψ j ′, j ′+r ′ψn−1−r,n−1−r ′ − ψ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′

+ϕ j, j+rϕ j ′, j ′+r ′ϕn−1−r,n−1−r ′ + ψ j, j+rψ j ′, j ′+r ′ϕn−1−r,n−1−r ′)bn−1−(r−r ′),n−1

Bφ(b j, j+r , a j ′, j ′+r ′) = (ψ j, j+rϕ j ′, j ′+r ′ϕn−1−r,n−1−r ′ − ϕ j, j+rψ j ′, j ′+r ′ϕn−1−r,n−1−r ′

+ψ j, j+rψ j ′, j ′+r ′ψn−1−r,n−1−r ′ + ϕ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′)an−1−(r−r ′),n−1
+ (ψ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′ − ϕ j, j+rψ j ′, j ′+r ′ψn−1−r,n−1−r ′

−ψ j, j+rϕ j ′, j ′+r ′ϕn−1−r,n−1−r ′ − ϕ j, j+rϕ j ′, j ′+r ′ϕn−1−r,n−1−r ′)bn−1−(r−r ′),n−1

Bφ(b j, j+r , b j ′, j ′+r ′) = (ψ j, j+rψ j ′, j ′+r ′ϕn−1−r,n−1−r ′ − ϕ j, j+rϕ j ′, j ′+r ′ϕn−1−r,n−1−r ′

+ψ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′ − ϕ j, j+rψ j ′, j ′+r ′ψn−1−r,n−1−r ′)an−1−(r−r ′),n−1
+ (−ψ j, j+rψ j ′, j ′+r ′ψn−1−r,n−1−r ′ − ϕ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′

−ψ j, j+rϕ j ′, j ′+r ′ϕn−1−r,n−1−r ′ + ϕ j, j+rψ j ′, j ′+r ′ϕn−1−r,n−1−r ′)bn−1−(r−r ′),n−1.

Finally, we need to define the Ad(N (H))-invariant scalar products h and k on m1 and m2 respectively, and use them
to compute the squared norm of the tensor φad12(φ)φ. We consider the natural Ad(SU (n))-invariant scalar product
on su(n) defined by: 〈A, B〉 = −

1
2 tr(AB) for every A, B ∈ su(n). Then, h and k are defined to be the restrictions of

〈, 〉 to m1 × m1 and m2 × m2 respectively.

Lemma A.2. The a jk and b jk constitute an orthonormal family in su(n), i.e.

(1) 〈a jk, a j ′k′〉 = δ j j ′δkk′

(2) 〈a jk, b j ′k′〉 = 0
(3) 〈b jk, a j ′k′〉 = 0
(4) 〈b jk, b j ′k′〉 = δ j j ′δkk′ .

Proof. First, notice that tr(E jk) = δ jk and that the a jk , b jk are only defined for j < k. We prove only (1), the
calculations being similar for (2), (3) and (4)

a jka j ′k′ = (E jk − Ek j )(E j ′k′ − Ek′ j ′)

= E jk E j ′k′ − E jk Ek′ j ′ − Ek j E j ′k′ + Ek j Ek′ j ′

= δk j ′ E jk′ − δkk′ E j j ′ − δ j j ′ Ekk′ + δ jk′ Ek j ′

〈a jk, a j ′k′〉 = −
1
2

tr(a jka j ′k′)

= −
1
2
(δk j ′δ jk′ − δkk′δ j j ′ − δ j j ′δkk′ + δ jk′δk j ′)

= δ j j ′δkk′ . �

h and k are thus represented by the identity matrices in the corresponding bases of m1 and m2, and the sixth-degree
term of the Higgs potential V (6)(φ) =

1
4‖φad12(φ)φ‖

2
hhk reads in this model:

V (6)(φ) =
1
4

∑
{(−ϕ j, j+rϕ j ′, j ′+r ′ϕn−1−r,n−1−r − ψ j, j+rψ j ′, j ′+r ′ϕn−1−r,n−1−r ′

−ϕ j, j+rψ j ′, j ′+r ′ψn−1−r,n−1−r ′ + ψ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′)2

+ (−ϕ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′ − ψ j, j+rψ j ′, j ′+r ′ψn−1−r,n−1−r ′

+ϕ j, j+rψ j ′, j ′+r ′ϕn−1−r,n−1−r ′ − ψ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′)2



M. Egeileh / Journal of Geometry and Physics 57 (2007) 1215–1237 1237

× (ϕ j, j+rψ j ′, j ′+r ′ϕn−1−r,n−1−r ′ − ψ j, j+rϕ j ′, j ′+r ′ϕn−1−r,n−1−r ′

−ϕ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′ − ψ j, j+rψ j ′, j ′+r ′ψn−1−r,n−1−r ′)2

+ (ϕ j, j+rψ j ′, j ′+r ′ψn−1−r,n−1−r ′ − ψ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′

+ϕ j, j+rϕ j ′, j ′+r ′ϕn−1−r,n−1−r ′ + ψ j, j+rψ j ′, j ′+r ′ϕn−1−r,n−1−r ′)2

× (ψ j, j+rϕ j ′, j ′+r ′ϕn−1−r,n−1−r ′ − ϕ j, j+rψ j ′, j ′+r ′ϕn−1−r,n−1−r ′

+ψ j, j+rψ j ′, j ′+r ′ψn−1−r,n−1−r ′ + ϕ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′)2

+ (ψ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′ − ϕ j, j+rψ j ′, j ′+r ′ψn−1−r,n−1−r ′

−ψ j, j+rϕ j ′, j ′+r ′ϕn−1−r,n−1−r ′ − ϕ j, j+rϕ j ′, j ′+r ′ϕn−1−r,n−1−r ′)2

× (ψ j, j+rψ j ′, j ′+r ′ϕn−1−r,n−1−r ′ − ϕ j, j+rϕ j ′, j ′+r ′ϕn−1−r,n−1−r ′

+ψ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′ − ϕ j, j+rψ j ′, j ′+r ′ψn−1−r,n−1−r ′)2

+ (−ψ j, j+rψ j ′, j ′+r ′ψn−1−r,n−1−r ′ − ϕ j, j+rϕ j ′, j ′+r ′ψn−1−r,n−1−r ′

−ψ j, j+rϕ j ′, j ′+r ′ϕn−1−r,n−1−r ′ + ϕ j, j+rψ j ′, j ′+r ′ϕn−1−r,n−1−r ′)2}

the sum being made on the positive integers j, r, j ′, r ′ satisfying the following constraints:

1 ≤ r ≤ n − 3
1 ≤ j ≤ n − (r + 2)

1 ≤ r ′
≤ n − 3

1 ≤ j ′ ≤ n − (r ′
+ 2)

1 ≤ r − r ′
≤ n − 3

1 ≤ n − 1 − r ≤ n − (r − r ′
+ 2)


.
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[13] M. Wang, W. Ziller, Existence and non-existence of homogeneous Einstein metrics, Invent. Math. 84 (1986) 177–194.


	Canonical Higgs fields from higher-dimensional gravity
	Introduction
	Dimensional reduction of symmetric gravitational fields
	The dimensional reduction theorem
	The potential for the Thiry scalar field

	Recovering scalar fields with polynomial potential
	Introduction
	Decomposition of  S2H (m) 
	The potential for the scalar field  phi
	The Yang--Mills term and the kinetic term

	Example with  G = S U (5) ,  H U (1)  and  N (H) |H T3 
	Conclusion
	Acknowledgements
	Example with  G = S U (n) ,  H U (1)  and  N (H) |H Tn- 2 
	References


